We thank K.-P. Lehr and Professor Hellwinkel for providing us with a sample of (I) and (II) respectively. We acknowledge financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

Au, M.-K., Siu, T.-W., Mak, T. C. W. \& Chan, T.-L. (1978). Tetrahedron Lett. pp. 4269-4272.

Berg, J.-E., Erdtman, H., Högberg, h.-E., Karlsson, B. \& Pilotti, A.-M. (1977). Tetrahedron Lett. pp. 18311834.

Bordner, J., Parker, R. G. \& Stanford, R. H. (1972). Acta Cryst. B28, 1069-1075.
Carrington, A., longuet-Higgins, H. C. \& Todd, P. F. (1965). Mol. Phys. 8, 45-48.

Cope, A. C. \& Fenton, S. W. (1951). J. Am. Chem. Soc. 73, 1668-1673.
Destro, R., Pilati, T. \& Simonetta, M. (1975). J. Am. Chem. Soc. 97, 658-659.
Fray, G. I. \& Saxton, R. G. (1978). The Chemistry of Cyclooctatetraene and its Derivatives. Cambridge Univ. Press.
Garst, J. F. (1965). Mol. Phys. 10, 207-208.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Gerson, F., Martin, W. B., Plattner, G. \& Sondheimer, F. (1976). Helv. Chim. Acta, 59, 20382048.

Günther, H. (1978). Justus Liebigs Ann. Chem. pp. 165175.

Gust, D., Senkler, G. H. \& Mislow, K. (1972). J. Chem. Soc. Chem. Commun. pp. 1345-1346.
Hellwinkel, D. \& Haas, G. (1979). Justus Liebigs Ann. Chem. pp. 145-149.
Hellwinkel, D., Reiff, G. \& Nykodym, V. (1977). Justus Liebigs Ann. Chem. pp. 1013-1025.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Irngartinger, H., Reibel, W. R. K. \& Sheldrick, G. M. (1981). Acta Cryst. B37, 1768-1771.

Johnson, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Karle, I. L. \& Brockway, L. O. (1944). J. Am. Chem. Soc. 66, 1974-1979.
Kojima, H., Bard, A. J., Wong, H. N. C. \& Sondheimer, F. (1976). J. Am. Chem. Soc. 98, 5560-5565.

Lindow, D. F. \& Friedman, L. (1967). J. Am. Chem. Soc. 89, 1271-1272.
Olah, G. A., Staral, J. S., Liang, G., Paquette, L. A., Melega, W. P. \& Carmody, M. J. (1977). J. Am. Chem. Soc. 99, 3349-3355.
Rapson, W. S., Shuttleworth, R. G. \& van Niekerk, J. N. (1943). J. Chem. Soc. pp. 326-327.

Rosdahl, A. \& Sandström, J. (1972). Tetrahedron Lett. pp. 4187-4190.
Schröder, G. (1965). Cyclooctatetraen. Weinheim: Verlag Chemie.
Senkler, G. H., Gust, D., Riccobono, P. X. \& Mislow, K. (1972). J. Am. Chem. Soc. 94, 8626-8627.

Tretteberg, M. (1966). Acta Chem. Scand. 20, 17241726.

SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1978). A34, 143157.

Acta Cryst. (1981). B37, 1728-1731

Dodecacarbonyltetra- μ-hydrido-tetrahedro-tetraosmium

By Brian F. G. Johnson, Jack Lewis, Paul R. Raithby and Camilo Zuccaro
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 30 January 1981; accepted 19 March 1981)

Abstract

Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}\right]\), triclinic, $P \overline{1}, a=9.811$ (3), $b=9.893$ (3), $c=10.240$ (4) $\AA, \alpha=85.56$ (2), $\beta=$ 82.71 (2), $\gamma=88.71(2)^{\circ}, U=982.82 \AA^{3}, Z=2, D_{c}=$ $3.72 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Mo} K \alpha)=25.83 \mathrm{~mm}^{-1}$. The structure refined to $R=0.043$ for 1815 unique diffractometer data. The Os atoms define a distorted tetrahedron with approximate $D_{2 d}$ symmetry, there being four long and two short metal-metal bonds. Each Os atom is

0567-7408/81/091728-04\$01.00
coordinated to three terminal carbonyls. The arrangement of these groups indicates that the four hydrides edge-bridge the four long $\mathrm{Os}-\mathrm{Os}$ bonds. The molecules pack in a disordered manner about a molecular centre of symmetry in a ratio of $19: 1$.

Introduction. A knowledge of the molecular geometry of the hydrido-carbonyl clusters of the type (C) 1981 International Union of Crystallography
$M_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ ($M=\mathrm{Re}, \mathrm{Ru}$, Os) is of importance because these compounds are the starting materials for many of the reactions which are currently being investigated to establish the role of metal clusters in catalysis (Muetterties, 1977; Muetterties, Rhodin, Band, Brucker \& Pretzer, 1979). These structures are also of interest from a theoretical viewpoint since $M_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ compounds ($M=\mathrm{Ru}$, Os) have the correct number of electrons to form six two-centre two-electron bonds, but $\mathrm{Re}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ is formally unsaturated, and the location of the hydrides is different in the two types of complex (Hoffmann, Schilling, Bau, Kaesz \& Mingos, 1978). IR spectral studies have shown that $\mathrm{Ru}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ and $\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ have the same symmetry (Knox, Koepke, Andrews \& Kaesz, 1975) while the symmetry of $\mathrm{Re}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ is higher. The structural differences between $\mathrm{Re}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ and $\mathrm{Ru}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ have been confirmed by single-crystal X -ray analyses. In $\mathrm{Re}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ (Wilson \& Bau, 1976) the metal atoms define a regular tetrahedron and the 12 carbonyl ligands are eclipsed with respect to the $\mathrm{Re}-\mathrm{Re}$ edges; this suggests that the four hydrides cap the four faces of the tetrahedron. In $\mathrm{Ru}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ (Wilson, Wu, Love \& Bau, 1978) the $R u_{4}$ tetrahedron is distorted to $D_{2 d}$ symmetry, with four long and two short $\mathrm{Ru}-\mathrm{Ru}$ bonds, and the carbonyl groups are staggered with respect to the metal-metal bonds which suggests that the hydrides may bridge the four long tetrahedral edges. There have been many attempts to grow suitable single crystals of $\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ so that the similarity between the Os and Ru analogues could be confirmed, and the bond parameters for the parent cluster hydride established. However, because of disorder problems suitable crystals have proved elusive until recently. Single crystals have now been grown and this X-ray analysis was undertaken.

Crystals of $\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ were obtained as pale yellow, elongated rectangular blocks by slow evaporation (1 month) from chloroform. 1945 intensities were measured (for $3.0<2 \theta \leq 50.0^{\circ}$) on a Philips PW 1100 four-circle diffractometer, using graphite-monochromated Mo $K \alpha$ radiation, an $\omega-2 \theta$ scan technique, and a crystal $0.096 \times 0.088 \times 0.128$ mm . Lp corrections and semi-empirical absorption corrections (based on a pseudo-ellipsoid model and 440 azimuthal scan data from 20 independent reflections which gave transmission coefficients ranging from 0.378 to 0.995 for the full data set) were applied. Equivalent reflections were averaged to give 1815 unique observed reflections $[F>3 \sigma(F)]$. Cell constants were derived from angular measurements of 25 strong reflections in the range $15<2 \theta<25^{\circ}$.

An E map, calculated using multisolution Σ_{2} signexpansion techniques, showed four strong peaks which defined a tetrahedron; these were considered to be the Os atoms. A subsequent difference synthesis revealed
the positions of the carbonyl groups, but also showed four peaks of height ca $7.8 \mathrm{e} \AA^{-3}$ over the four faces of the Os tetrahedron related to the Os atom positions by an approximate centre of symmetry. These peaks had too high an electron density to be hydride ligands, and there were chemically unreasonable contact distances to the carbonyl groups. An examination of the bond parameters suggested that these peaks represented another orientation of the Os_{4} tetrahedron occurring in a small fraction of the sites. The structure was refined by full-matrix least squares. The Os atoms in the two orientations were assigned occupancies k and $1-k$ respectively; k refined to 0.954 (3). The high-occupancy Os atoms were assigned anisotropic thermal parameters, while the low-occupancy Os atoms, and the C and O atoms (occupancies set to unity) were refined isotropically. A weak constraint was placed on the low-occupancy Os-Os distances, so that the four long and two short bonds in the tetrahedron were each equal; the Os -Os distances refined to values of 2.90 (2) and 2.84 (2) \AA. Complex neutral-atom scattering factors (International Tables for X-ray Crystallography, 1974), and a weighting scheme $w=$ $1.551 /\left[\sigma^{2}(F)+0.0002|F|^{2}\right]$ were employed. The refinement converged to $R=0.043$ and $R^{1}=$ $\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|=0 \cdot 044$. Final atomic coordinates and isotropic or equivalent isotropic temperature factors are given in Table 1, while the corresponding bond lengths and angles are listed in Tables 2 and 3 respectively.*

Discussion. This X-ray analysis confirms that $\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ is isostructural with its Ru analogue (Wilson et al., 1978). The four Os atoms define a distorted tetrahedron. with four long [mean 2.964 (2) \AA] and two short [mean 2.817 (2) \AA] metalmetal bonds. The two short bonds are opposite edges of the tetrahedron so that the cluster core has approximate $D_{2 d}$ symmetry. The 12 carbonyl groups are terminal and linear with $\mathrm{Os}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances of 1.91 (2) and 1.14 (2) \AA. These groups are staggered with respect to the Os-Os bonds and the carbonyl polyhedron may be described as a cubo-octahedron. An examination of the cis $\mathrm{Os}-\mathrm{Os}-\mathrm{C}$ bond angles shows that the CO groups cis to the long $\mathrm{Os}-\mathrm{Os}$ bonds bend away from them [mean $105(4)^{\circ}$] while those cis to the short bonds do not [mean $94(2)^{\circ}$]. This suggests that the four hydrides bridge the four long $\mathrm{Os}-\mathrm{Os}$ edges, the steric influence of the hydrides causing the carbonyl ligands to bend away. Similar trends have been observed in the structure of $\mathrm{Os}_{3} \mathrm{~W}(\mathrm{CO})_{11^{-}}$ $\mathrm{H}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (Churchill \& Hollander, 1979). Fig. 1 shows

[^0]Table 1. Atom coordinates ($\times 10^{4}$) and equivalent isotropic or isotropic temperature factors ($\AA^{2} \times 10^{3}$)

	x	y	z	U
	x	$y(1)$	$785(1)$	$35(7)^{*}$
$\mathrm{Os}(1)$	$3103(1)$	$2570(1)$	$2542(1)$	$32(6)^{*}$
$\mathrm{Os}(2)$	$746(1)$	$3127(1)$	$33(1)$	$33(7)^{*}$
$\mathrm{Os}(3)$	$3476(1)$	$3396(1)$	$3438(1)$	
$\mathrm{Os}(4)$	$2510(1)$	$770(1)$	$3231(1)$	$32(6)^{*}$
$\mathrm{Os}\left(1^{\prime}\right)$	$1780(20)$	$2552(25)$	$4170(18)$	$46(7)$
$\mathrm{Os}\left(2^{\prime}\right)$	$4249(18)$	$1940(21)$	$2434(18)$	$32(6)$
$\mathrm{Os}\left(3^{\prime}\right)$	$1643(23)$	$1488(22)$	$1635(19)$	$44(7)$
$\mathrm{Os}\left(4^{\prime}\right)$	$2509(19)$	$4241(18)$	$1826(18)$	$32(6)$
$\mathrm{C}(11)$	$2051(28)$	$1769(29)$	$-391(25)$	$48(7)$
$\mathrm{O}(11)$	$1438(24)$	$1216(23)$	$-1003(21)$	$77(6)$
$\mathrm{C}(12)$	$2994(30)$	$4235(31)$	$-96(27)$	$55(7)$
$\mathrm{O}(12)$	$3047(25)$	$5194(25)$	$-838(22)$	$83(7)$
$\mathrm{C}(13)$	$4808(34)$	$2069(34)$	$-58(30)$	$65(8)$
$\mathrm{O}(13)$	$5888(26)$	$1684(25)$	$-492(22)$	$87(7)$
$\mathrm{C}(21)$	$-537(27)$	$2281(27)$	$1589(24)$	$45(7)$
$\mathrm{O}(21)$	$-1300(22)$	$1818(21)$	$1013(19)$	$66(6)$
$\mathrm{C}(22)$	$399(30)$	$4845(30)$	$1689(27)$	$52(7)$
$\mathrm{O}(22)$	$243(21)$	$5904(22)$	$1173(18)$	$61(5)$
$\mathrm{C}(23)$	$-533(32)$	$3416(32)$	$4043(29)$	$60(8)$
$\mathrm{O}(23)$	$-1367(23)$	$3647(23)$	$4921(21)$	$77(6)$
$\mathrm{C}(31)$	$5284(33)$	$2707(32)$	$3617(28)$	$59(8)$
$\mathrm{O}(31)$	$6374(26)$	$2354(26)$	$3716(23)$	$85(7)$
$\mathrm{C}(32)$	$2965(29)$	$3362(30)$	$5261(27)$	$53(7)$
$\mathrm{O}(32)$	$2557(23)$	$3328(23)$	$6377(20)$	$73(6)$
$\mathrm{C}(33)$	$3958(32)$	$5258(31)$	$3282(28)$	$56(7)$
$\mathrm{O}(33)$	$4248(26)$	$6368(27)$	$3207(23)$	$86(7)$
$\mathrm{C}(41)$	$4229(32)$	$-117(31)$	$3407(27)$	$57(8)$
$\mathrm{O}(41)$	$5296(25)$	$-623(25)$	$3438(22)$	$78(7)$
$\mathrm{C}(42)$	$1914(26)$	$447(26)$	$5087(24)$	$40(6)$
$\mathrm{O}(42)$	$1590(22)$	$229(22)$	$6162(19)$	$68(6)$
$\mathrm{C}(43)$	$1663(31)$	$-855(32)$	$2801(28)$	$59(8)$
$\mathrm{O}(43)$	$1206(23)$	$-1771(23)$	$2492(20)$	$75(6)$

Table 3. Bond angles $\left({ }^{\circ}\right)$

Fig. 1. The molecular structure of $\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$.
Sheldrick \& Süss, 1978) there are four short and two long metal-metal bonds; the unbridged edges are similar in length [mean of four 2.798 (9) \AA] to those in $\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$, but the two bridged edges are significantly shorter [mean of two 2.934 (4) \AA]. This difference is probably due to delocalization of the additional negative charge over the cluster framework, since there is better agreement between the Os-Os bond lengths in $\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ and the neutral derivative $\mathrm{Os}_{4}(\mathrm{CO})_{11} \mathrm{H}_{4}\left(\mathrm{CNCH}_{3}\right)$ Imean bridged $\mathrm{Os}-\mathrm{Os}$
2.963 (2) \AA, unbridged $2.822(1) \AA$] (Churchill \& Hollander, 1980).

The presence of edge-bridging hydrides in $\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ is as expected from simple electroncounting considerations. This complex is an 'electron precise' 60 electron system with the correct number of electrons to form two two-centre two-electron Os-Os bonds and four three-centre two-electron $\mathrm{Os}-\mathrm{H}-\mathrm{Os}$ bonds. $\mathrm{Re}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ has only 56 electrons, and it appears to be more favourable to form four four-centre two-electron $\mathrm{Re}_{3} \mathrm{H}$ bonds; hence the difference in structure between $\mathrm{Re}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$ and $\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}$.

We thank the Science Research Council for financial support, and Dr M. McPartlin of the Polytechnic of North London for the use of the Philips diffractometer. We are grateful to the Universidad Metropolitania, Venezuela, for a grant (to CZ). Calculations were performed on the Cambridge University IBM 370/165 computer with SHELX 76 (Sheldrick, 1976); the figure was drawn with PLUTO written by Dr W. D. S. Motherwell.

References

Churchill, M. R. \& Hollander, F. J. (1979). Inorg. Chem. 18, 161-166.
Churchill, M. R. \& Hollander, F. J. (1980). Inorg. Chem. 19, 306-310.
Hoffmann, R., Schilling, B. E. R., Bau, R., Kaesz, H. D. \& Mingos, D. M. P. (1978). J. Am. Chem. Soc. 100, 6088-6098.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johnson, B. F. G., Lewis, J., Raithby, P. R., Sheldrick, G. M. \& Süss, G. (1978). J. Organomet. Chem. 162, 179-187.
Knox, S. A. R., Koepke, J. W., Andrews, M. A. \& Kaesz, H. D. (1975). J. Am. Chem. Soc. 97, 3942-3947.

Muetterties, E. L. (1977). Science, 196, 839-848.
Muetterties, e. L., Rhodin, F. N., Band, e., Brucker, C. F. \& Pretzer, W. R. (1979). Chem. Rev. 79, 91-137.

Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.
Wilson, R. D. \& Bau, R. (1976). J. Am. Chem. Soc. 98, 4687-4689.
Wilson, R. D., Wu, S. M., Love, R. G. \& Bau, R. (1978). Inorg. Chem. 17, 1271-1280.

Acta Cryst. (1981). B37, 1731-1733

Di- μ_{3}-selenido-tris(tricarbonylosmium)(2Os-Os)

By Brian F. G. Johnson, Jack Lewis, Philip G. Lodge and Paul R. Raithby
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 30 January 1981; accepted 19 March 1981)

Abstract

Os}_{3}(\mathrm{CO})_{9} \mathrm{Se}_{2}\right]\), triclinic, $P \overline{1}, a=6.804$ (3), $b=9.620$ (5), $c=13.527$ (6) $\AA, a=94.206$ (21), $\beta=$ 95.570 (24), $\gamma=110.469$ (25$)^{\circ}, U=820.1 \AA^{3}, Z=2$, $D_{c}=3.968 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Mo} \mathrm{Ka})=27.62 \mathrm{~mm}^{-1}$. The structure refined to $R=0.042$ for 4106 unique observed diffractometer data. The Os atoms define a triangle with one long non-bonding edge [Os..Os 3.791 (1) $\AA]$. The Se atoms cap this triangle on both sides to give a trigonal bipyramidal cluster core. Three terminal carbonyl groups are also bonded to each metal.

Introduction. In trinuclear and square-planar tetranuclear clusters which are capped by ligands on both sides there is the possibility of a bonding interaction between the ligands. In the structure of $\mathrm{Co}_{4}\left(\mu_{2^{-}}\right.$ $\mathrm{CO})_{2}(\mathrm{CO})_{8}\left(\mu_{4}-\mathrm{PPh}\right)_{2}$ (Ryan \& Dahl, 1975) the $\mathrm{P} \cdots \mathrm{P}$ distance of 2.544 (3) \AA indicates the presence of a bonding interaction between these atoms. There is less evidence for such an interaction in the S analogue
$\mathrm{Co}_{4}\left(\mu_{2}-\mathrm{CO}\right)_{2}(\mathrm{CO})_{8}\left(\mu_{4}-\mathrm{S}\right)_{2}$ (Wei \& Dahl, 1975) or in the complex $\mathrm{Fe}_{3}(\mathrm{CO})_{9} \mathrm{~S}_{2}$ (Wei \& Dahl, 1965). During the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with elemental Se under reflux, in n-octane, $\mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{Se}_{2}$ was isolated as one of the products (Johnson, Lewis, Lodge, Raithby, Henrick \& McPartlin, 1979). It was decided to undertake this crystal-structure analysis in order to determine the molecular parameters, and to establish whether an increase in the size of the capping atom increases ligand-ligand bonding interaction.

Deep-yellow platelets of the title compound were obtained by slow crystallization from hexane. 4948 reflections were measured for $3.0<2 \theta<60.0^{\circ}$ on a Stoe four-circle diffractometer with graphite-monochromated Mo $K a$ radiation, an $\omega-\theta$ scan technique, and a crystal $0.34 \times 0.29 \times 0.10 \mathrm{~mm}$. Lp corrections and a semi-empirical absorption correction based on a pseudo-ellipsoid model with 292 azimuthal scan data from 12 independent reflections were applied; transmission factors ranged from 0.026 to 0.081 . The data

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36066 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

